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Admissibillty Of Fixed=Polnt Induction In First-Order Loglo
0f Typed Theorles

by

Shigeru lgarashl!

i Introduction

D, Scott postulated a |oglo of typed functions comblined with
fixed=point Inductlion[1@], R, Mljiner modifjed this Jjoglc Into a
forral system called LCF so as to handie A=expressions convenlent|y,
and implemented It in an Interactive proof checkerr6], Since an
early period of ¢th|s Implementation |t has peen thought that some
preclcate calculus~|lke facll|ty may be needed for some or Other
reasons, so that |n the machline version of LCF are Inciuded a kind of
unlversal quantifiep ang Implication, the latter belng one I|eve|
lower than the Implication Included In the original logle, These
operators, however, can he used in quite a restricted manner, for
they are on|y abbreviations of jegitimate formulas In LCF, Espellally
Implicatlion cannot he nested,

The writer gdevised a formal means to carry out derlvations of
a predicate calculus WwWhose obJects were typed A=expresslons within
LCF, which calculus Incijuded the unliversa| quantifier as we|l as
usual propositiona) operators but not the ex|stentla| quantifier,
which could not be replaced by negation and universal quantifloation
since Gentzen’s intultionistlc system was used as the basls., J,
McCarthy[4) proposed to use the full classlical predicate cajculus as
a super~structure of LCF, quantifiers ranging over LCF objects, ie
suggested a)so some generallzation of such a system, The formal
system dlscussed In the present paper |s In the essential|s along the
last |Ine, The mai{n purpose of the present paper Is ¢to aljow
Scott=-type flixed-point induction as much as possible In the intended
logic¢,

This polnt wi|l be explained more conoretely, Suppose ! and ¢
are continuous partlal functions, The predicate f=zg, where the
equallty means the "strong equallity", l,e., If one side |s wundefined
so Is the other, Is not contjnuous, But as In Scott’s joglc we gan
use flxed=polint Indyctlion In order to prove this wequallty, Then
what wi|| happen to the foljowing formuia which we are Qoing to aljow
Iin the Intended logic?

Yx(f(¥)sa=+g(x)=h(Xx)),

with the axlom



f=Min AfaxJ(f,x),

- being implication in the classical sense, Min the minimaj
fixed=point of the function to which It is prefixed, and J(f,x) a
term In LCF, It turns out that if all the functions Invojved In the
expression J(f,x) are continyous, which condition is rather naturai
In order to consider |ts fixed=-point, and the range of f |5 discrete,
like a poolean functlon, then we can apply fixedepoint Induot!ion
Wwithout incurring inconsistency, even |f g and h are non=continuaus
functions, In fact the continulty of 3 and h does not matter In thls
case, for fixed-polnt Induction is not sound unless the above
conditlons are satlisfjegq,

We shail glve a syntactic character|zation of the formujas
for which fixed=point induction |s sound, so that machimes cam oheok
autoratically whether or not a gliven formuia admits appjlcation of
the inference rule corresponding to fixed=point inductlon,

4 First-Order Logic of Typed Theories

We consider a kind of Infilnitejy many-sorted ?irsteorder
logic in the classical sense(12]), The objects are indlviduals In the
usual| Sensc¢ togethep with functions of Individuals or previousiy

defined functiong, Eech type c¢an be regarded as 8 sort, Onily
objects are typed, and we do not consider predicate varlables, The
Intended forma| system wiif be aboveviated as FLT, We shall

partially tollow shoenfleld’s style[11],

2,1 Language

Types

Al, We presuppose that there are a number of types called the
"base types", Some of the base types can be "ordered types", Types

2

-t

€2

-
-/



are denoted by a, B, 8%tC. and the ordered types are postfixed by the
jetter "o", Ilke a@o, NO rejationships between « and @0 ar® assumed
if both a and @o happen to De base types. Types other than the base
tyoes are called the wfunctlon types",

A2, [f o and B are types, SO |g a<B, Both al-a2s ,,, «an=f and

al, 92y +o¢ 2OFe5 are ysed as the atbreviations of age(a22( 4,
a(dnﬂﬂ)...)).

A3, If ap and Qo are types, whleh must be ordered types, 80 Is

(aO"QO)o.

Because of this constructlion we can consistentl|y abhraviate
wors except the outmost one, For Instance, (eo+(PRo+(Ro=Ro)ololo s
abbreviated by (4B LBeB)o,

Alphabet

The a|phabet of the Intended formai system consista of
s=-constants and d.varliables for each type a, (91, .
,an)=predicates, 1,e., predicate constants, tfor each n-tuple (%1, ,..
,an) of types (n2@), and the following joglical symbols,

= (, ) =vVv 3 Min

i(f @ s & basa typs; Aan dT=constaht or variabie can be ca|led an

Ind|vigual caonstant or virlable, Qtherwias; BA g=gonatAnt or
vgrlable can DB called a funetlen gonstant er waprlgbl®, 1t must Qe
notad that functions of arblitrepy finite ordlr sopear, =n (%ls .

sani=predicate is am n argument pragicats In the ysyal sersé,; the
l=th argument being of type I far aach | (1213n),

We shal| use several defined symbolis which are standard |n
logle as follows,

§ » VvV =

The syrbol = stands for impllcation, and = for loglcal equlvalence,
Thus = reans functlon in the text and Implicetion In formuias,

Terns
R1, 1f a |Is an a=constant, then a is an a=term, 1f x Is an
a-varlable, then x is an a=-term,
B2, 1t t i3 an a»B=term and U s an a=term, then g(u) Is a
B-term, t(u) can be also written as (t u)y and (¢(uw)Y(v) as
t(UlV)o
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R3, [f t is an (a9g«ao)o~term, then Min t |s an ao-torm,

B4, It t Is an ao-term and %0 Is a function type, then t I8 an
a’t‘rm.

Cormulas

cil, If t and y are a-terms, then tzu |s a formula,

ce, I1f p is an (91, .,, ,9n)-predjcate that Is different rom ®,
and tl Is an ai-term for eagh | (15ISn) , then P(tls 44y 2tn) Is a
formula,

c3, If A is a formula, then ~A |s a formu|a,

cq, 1f A and 8 are formulas, then AvB, A&B, and A<B are formuias,
C5, Iv & is a formula and x |s an @=varlable, then VxA and 3xA

are forrulas,
2.2 Interpretation

Wa choose a noneempty set D[¥], or Da, for each base tybe «a
as the domaln of Individuals of type a, If a |s an ordered base
type, We assume further that D9 Is an ordered set (L, <) satlsfying
the followling conditions,

(iy (L, 2) bhas the least element, l.,e, int L, whicgh shal| be denoted
by C,

(11) (L, <) 1s an =-inductively ordered set in that [ |Is non=empty
and eVery noneempty countable set X such that X<L and X |s |{nearly
ordered has sup X In L,

That L is non-emoty Is a part of the standard definitlon of the
inductively ordered set, whlch 1Is automatically sati{sfled In this
case, The symbol "=" peads "omega" through out this paper, In some
case, It can be read "a|eph naught",

Supnose Da and DB have been deflmed, We |et DCa=P] be the
set of all the functions of Da | to Dp, If @ and p are ordered typs,
we ‘et D[(%+P)o)] ba the set of all the ==continuous functions
belorgling to DCa~7] together with the order relation < deflned by

f<g |ff f(x)<g(x) for any xeDa,

where ithe =e=continujty is deflned as follows,
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Definition, A "sequence” X In & set L Is a funotlion of <the set of
the positive Integers INto L, Xn denoting the neth term X(n), X
is wrlitten as (Xn) sometimes, A "monotone Increasing" sequence X
In (L, &) Is a sequence In (L. <) such that

X1 € X2 %2 ,,s £ XN S 4y, '
f Is "==gcntinuous” I¢f
fisup X) = sup (X)),

for any monotone |ngreasling sequence X in (L, <), where f(X) denotes
the set (F(x)|xX}),

Remark, f |s wegontinuous in this sense Iff f(sup X) = sup f(X)
for any countable directed set XcL. (See saction 3,) Thls property
will be called the =econtinuity, while a stronger deflnition of

contlnuity is that f(sup X) = sup f(X) for any directed set Xci, f Is
salo t0 be "monotone"” Iff f(x)Sf(y) whenever x<Y, The wegontinulty
impiies the monotonijcity, which can be shown as fo|lows{i0],

Suppose xs%Yy, Let X1 be x and Xn be y for any n22, so that X |s a

monotone increasing sequence, By ==continulty, f(sup X) s sup f(X),
But sup X = y, and f(x) < sup f(X), Therefore f(x) § f(y),

by thls constructlion D90 can be shown to satisfy the
concitlons (i) and (11), so that the |nductive definitlion works, In
fact, the functlon g: Dao<Dpo sSuch that

gix) = 0 for any x€Dao

Is the J|east element of D[(%0<Ro)o), and, for each asending chaln
{fn) In D((a0+R0)3), the functlon h; [%o<DRo that maps each e|ement x
of Doo onto sup{fnix)) |s sup{fn),

With each a=constant a in FLT |Is assoclated an ejement a» of
Dq., WIith each (al, ,., san)-predicate p In FLT 1Is assoclated an
n-ary relatlon p#* In Dal® ,., ®Dan, Such a coji8ctlion of Dg’s will be
cenoted by D, and F_T(D) wil| denote the |anguage obtalnsd from FLT
by adding a new a=constant, callied a "name", for each element of Da,
for each o,

A term s "closed" If no variabies occur free In |I¢t,
Especially, a variapl!e~free term Is cjosed In this sense, We yse
this terminology becaouse we shsi| extend the syntax of terms later
in order to axlomatize LCF, In which Axx Is a closed term, thouph |t
is not varlable~freg, We defline an %=individual »t for eech closed
a-term t by Inductlon on terms,

C1, If t is an Indlvidual symbol, then t must be an a=constant
since t Is closed, e |et vt be a*éDa,
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b2, If ¢ is u(v), then U must be a closed a«p=-term and v a closed
a~term: so that ryéD[a<9] and eveDa, We jet w(u(v)) be wry(wv ),

03, If t Is Min u, then u must be a closed (ao=90)o=term, 80 that
*U |S an =~continuous function of type wo<ag, Let f denote ru, We
let *t Dg inf{xlglx)ax) (With reSpect to the ofgering of 9o), namg |y
the least flxed pol t of f, which is showy to exist ag followslilld,

Let f,n,x danote
FOFC o0y FUX)yyy)) (f occurs n times),

for each n28, Especially, f,8,x 1Is «x, Then sup(f,n,d), or
sup{f,n,0|0sn<=) strigtiy, Is In fact infix|f(x).x)}, BY wegontinuity,

suD(f(f.n.O))
sup(f,(n+1),0)
sup(f,n,0|18n¢=)
sup(f,n,0},

f(sup(f,n,0}))

IAn

by monotonicity (see the above remark),

sup{f,n,2) < f(sup(f,n.0}),
Thus
f(sup(f,n,0})) = sup(f,n,0),
Namely sup{f,n,0) js a flxed polnt of f, Let a be an element of Dao

such that f(a)=a, gince 0<a, f(0)<f(a)=a, by monotonicity, 7then, by
mathematical Induction, f,n,08a for any n, so that sup{f,n,0)Sa, Thus
sup{f,n,d)=infix|f(x)zx),

D4, I t is a cloged Yo=-term and 90 is not a base type, then «te
Dao and D¥ocDa, so that rteUa,

A truth valuye 1is either T or F, T means "¢ryue” and F
"fal|se",

k tormula is "cjosed" if no varlables ocour free In I¢t, We
define a truth valuye ra for each closed formuia A |n FLT(D) by
Induction on formulas, A[ J, or tC 1, denotes a formuia, or a term,
with voids, and A{x), or tCX]), results of repjacing them by x,

£1, 1f A is <¢=ys then t and y must be closged determs for a
certain o, since 5 is closed, We let
rAZT (ff meswy,
£2, If A is p(tls +uvv stn) where p is different from 3, we |eot
vAST [ff peltl, .44 2tn),
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E3, If A Is -B, then we Jet
rAST |ff wB3F,
E4, If A |s BvC, then we |et
*A=T |ff »B=3T op w»C=T,

ES, If A is 3xB[x] and x |s an a-variable, then B[a) |s ¢losed
for each a=name a, We |nt

vrAST |ff »(BCal)sT for some A=-pame a,

A "D-instance" of a formula ACx1, ,,. 1%Xn] of FLT 1s a closed

formula of the form Aray, ,., »an] In FLT(D), where al ls an 9|=name
it x1 Is an 9levarjaple (1si<n), A formula A of FLT |s "valld" In D
|f »A?=T for every D-|nstance A' of A, In particuiar, a oloaed
forrula A of FLT Is valld Iff wA=T,

2,3 Truth functions assoclated with formulas

To study the properties of formulas we shal| conslder truth
functions, namely fyunctlions whose values are the truth vajues T end
Fv assoclated with formulas In the natural manner, Forp the
convenlenge of the later description we uyse the following
terrinologles,

Let x be an a-variable, and A[(x] a formula |n which at most x
occurs free, Since Ala) Is a ciosed fromula for each G=name a, we
can define a function f; Da<(T,F) that sbnds each ge ento the truth
value wvACal, f Is called "the truth functlion cdetermined by A and x
Im D", or, if there is no ambligulty, "the truth function determined
by A"

Let Alx1, ,,, ,xnl be a formula In which at most varlab|es

XL, yes + xne respectively of type ai, ver 2 @n, occur froe, A
"(D,x1)=instance”" of ACx1l, .,. »Xn] In FLT Is a formula In FLT(D) of
the forrm Alfal. vy ,a(l-l).XI.a(|+1)o v e O'nJ where .10 e 2 AN are
names of type o1, ,,, , an, Thus at most x| ocours free In formujas
that are (Dy)xl)=ipnstances of a formula (15i<n), Therefore each
(Dyxl)=Instance determines a truth function,

AlX1, 4,44 »xn] also "determines" an n=ary truth functlion ¢
Dlaile ,,, eDlon) 4 (T, F) that sends eaoch netuple (aje, ,,, ,ane)
onto »A(fal, v 98N],



2,4 Loglcal axloms and rules

We shal| accept the following axloms and rules for FLT,

Rule of substitution, In the below schemata of axloms or rules,
arbitrary varlables can Dbe subst|tuted In plaoe of a, x, y, 2z, x1,
Yl 21e ovs 0 Xxny yny Zme Bng we apbjtrary torms |n pl&Cg of t» W
v, and g, an apbitpapy nNewapy prédicate In place f D f°, each n, and
an arbltrary formyla En place of A, B, and 8. subJget ¢to the
restrliotions that the results of substitutions should be well=formed
formulas and that any free occurrence of varjabjes should be kept
free, On the Induction axlom are Imposed the add|tliona| restrliotion
that only those formulas of the form Ar 4 that “admlt Inductlon
syntactically" are substituted In place of AL 1, The effectlive
definition of formujas that admit Induction syntactioa|ly Is glven
'n sﬁctlon 6.1.

Logjcal axloms

proposlitional axlom, -~AVA,
Identity axlom, Xx3x,
equality axlom, X3y = Z3w =+ x(2)zy(w!,

XSy » M|n x = M|n vy,

Xilzyl = ves * XPNEYyn =+ pixi, ves 2XN) = p‘y1p veg 2¥YR),

stationariness axjom, x(Mln x) = MIn x,

inductlon axiom, ACOJ+VY(ALY2=ALx(y)])ealMIin x],
Rules of Inference, We shal| accept all the rules In Gentzen’s
system of Natyral Deductlon(l), or NJ, wWith the following

modiflcation of the quaptifler-|ntroduction and e|imination rules,
(a geslignates a variable In thls sectlon,)

Ve=introouction ruje, Vee|Imination rule,
Ala)] YxA[x])
L N ¥ ¥ ¥ <a> LA X X ¥ ¥
YxA[Cx) ACt)



3-introduction rule, 3-g|imination rule,

(Ala])
ACt) IxACx] C
ommm e e T L A <a>

IxAlx) ¢

Ragtriction! In tree Yeo|imination rule and the 3-introductlion rule,
tha ollrinated oOF Iptroducnd poynd varlabD|e, roplacing %x; myat O® of
ths sare tyoe as the corregponding  term, replacing &, In the
y=lntroguction rule and A j=a]imination rule, the Introduged or
p|lrinated bound varlab|®,. +aplaclg a, must oe of the same tyom an
¢he corresponding fres varlagle telgenvariablie), replacing a,

<a> Inolcates the restrictlion, In the original NJ, that the
free variable substituted In place of a ooocurs only In the places
expilcltly cesignated by 8, Thus, for Instance, In the
velrntroduction rule the free varlable replacing a must not occuf In
the formula designated bY YXALx], nor [n any assumption formuia of
¢that formuia,

As appears |n the above rule we use ( ), |n stead of L 1 In
the origlinal notatlon, 10 indicate the assumption formula whleh is
not carrled beyond the bar, Bes|des, we shal| use A == R sometimes,
as well as (), to denote that A |s an assumption formula of B, and
Al, eoe 2 AM ==2 Bl, 44 Bn to denote a “"sequent", In the sense of
Gentzen’s LK, For instance, the veg|Imination ruie can be expressed
in the following ways, and We sha|! use all of them In the sequel for
the convenience of gescription,

veelimination rule,

(A) (8)
AvB c C
C

Infer C from AVB, A=<C, and B==C,
Infer P === C from P === AvVB, A,P ==+ C, and B,P === C,

an Inference rule of the last form, 1,8, a rule to Infer a
sequent from other gequents Is called a vrefatlvijeag"” Inference rule,
A sequent of the form Al, .« LAm === 31, .. 280 I8 wval|ld In D" 1f¢f
the formula Al1&,,,8Am = Biv,,.vBn IS val|ld In D, A relativized
Inference ruje Is "sound" iff the consequence of the rule {s valld In
D (as sequent) whenever all of its premises are valld In D, for any
D.



We oan treat the loglical| axioms In the form ¢f (Infasrenoe

rules, We list them 1In the generailzed forms for the praotical
derivation, These rules are derived rules actually,

propositional rule, identity rule,
=AVA t=t
equality ruije, stationariness rule,
t=u Al ¢
Alu] t(Min t)sMin ¢t

Inductlion rule,
ALO) AfCal«A(t(a)]

CE TR L DL L A A Al Aol <a>

ACMIp t]

¢a> lIndicates the same restriction as described above, Thus the
varilable substituted in place of a must not occur free in ACMIn ¢,
nor In ACQJ, nor In any assumption formuia of ALMIn t],

Apparently the Induction axiom, or rule, is not acceptable
uniless some adcquate restriction, |ike the one indicated In the rule
of substitution, 5 imposed on it, Flirst, In order to Instantiate
this axiom by a namg b, substituting b in place of x, «b must be
w-continuous so that Scott-type fixed point Induction makes sense,
which restriction Is satisfied in the present formalism, “cr MIn b Is
not 2 well=-formed terr otherwise, Second, even if Min b represents an
wecontinuous function of an appropriate type, there exlist many
forruias which make this axiom not vallid, The main purpose of thls
peper |s to.characterize those formuias for which the inductlon axlom
is vallag, so that they admit the appllcation of this rule,

10
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3 Weakiy Contjnyous Functions

The valliglty of the Inguetion axlegm rof|ecty the properties
of truth functians associated with formyuias of FLT, The first such
Broperty Wil ne eallad the Waeak centinulty, gt mUst be noted that
moat of the truth functions determined oy formulas of FL7T are npot
gontinuaug, a'd ¥s sre golng ta 83%n ! 18n somg eriterly for sugh
Adn=continuaiys oredicgtes to make ThHo induction axlam vajld, Tha
week cortinmulty can be deflned for functlons. so that we dlscuss thig
oroperty In general,

Through out thig Section, L denctes ap ==|ndugtive|y erdepad
set With the |asaxt olament O (see soction €¢2)y ANE L' g complate
lattice, Name |¥, L* is amn arcdored T&t such that Inf y and @§up X
exist for any Subgag x ¥ L'y O ang | shal| denote thm least »|amant
of L', ar Inf L+, and the greantast alemant of -, er sup L*,
respactively,

L&t X @B a sequence In L°, Wi canaldar thg manatona

Increasing Sequenge Y deflined oy vn & irfi¥mimzn}, and the monotone
decreasing seguenmce e deflned by 2&n = suplXmimgn}, whigh arae
Heli=-deflneg py CoMg letan#ss, Than, py cempletenees agaln, sup Y and
Inf £ oxiat, “hleh are galied *Iimint Xv gnd “Ilmayp x» respective |y,

3.1 Definition, A sequence X |n g cCompjete lattice L’ I's
“convergent" |ff

liminf X = |imsup X,
In such a case we define jim x by

lim X liminf ¥

I imsup X,

A sequence X inm an ordered set is a "quasl-ascendlng chain® Iff |t |s
an ascending chain gr there exists ga Number M g,t,

X1 < Xz < 1o € XM =2 X(M+1) = tee = X(Men) s Yoo ’
In the jattar cass X Is sald to be "seml-flnlte".

3,2 Proposition, Let f be a functiogn S.t. f1 (e, f(x), 1,e, the
sequence (f(Xn)}, Ig convergent for any sami-finite X, andg

lim f(X) = f(sup X),

Proof, Apparently

11



Lim f(X, = f(XM) and XM = sSup X,

where M satisfies the condition of definition 3,2,

3,3 Proposlition, Let f be a fynction Sety fi LeL’, f |s
“=contlinuous |ff

f(sup X) = sup f(x),
for any countable directed set X s,¢t, Xeg,

Proof, The sufficiency |Is trivial, We prove the necessity,

Let x be a countable dlrected set s,t, XSL, Then we g¢an chcose o
quas!=ascending chajn Y S¢ts YEX and Y Is cofinal In X S0 that

sup Y = syp X,

Suppose f |s ==continyous, Then, by ==continulty,

f(sup Y) = sup fcy),
But
sup f(Y) S sup f(X),
since
Y ¢ X,
Thus
f(sup X) = flsup Y)
= Sup §(Y)
£ sup ¢(X),

By ronotonicity (seg the remark in section 2,2),

fix) S f(sup X) for any xeX,
since

X £ sup X,
s0 that

sup f(X) < f(sup X),
Therefore

f(sup X) = sup fix),

3.4 Definition, Let L be an “-induct!vely ordered set, and L’ g
complete jattice, f: L+L’ Is "weak|y continuous" |ff

f(sup X) = [|Im f(x),

for every ascending chain X In L, (This relationship imp|les that Jim
f(X) exists, for the |efrt hand side a|ways exists,)

3.5 Proposition, f |g weakly continuous Iff

fesup X) = 1im f(X)

12



for any quaslie-ascanding chaln X,

Proof, Apparent from proposition 3,2,

3,6 Theoren, f |s =~continuous |[Iff f |s weakly continuous and
monotone,

Proof, necessity: suppose f is =-gontinuous, Then f |s monotone,
so that for any ascending chaijin X

fIX1) € f(X2) € o '

Therefore

sup f(X) = |im f(X),
By ==continulty,

fisuyp X) = sup f{(X),
30 that

f(syp X) = |Iim f(X),

sufficlency! Let X be an quasi-ascending chaln, We have to show

suyp f(X),

f(sup X)
Ry weak continuity,

fisuyp X) 3 LIim f(X),
and, by monotonlicity,

lim f£¢(X)

sup f(X),

so that
sup f(X),

f{sup X)
3,7 Theorem, f |s weakly continyous Iff for any ==continuous
function g¢ L-L the following relationship holds,

f(Min g) = I 1m f(gcnlo’i

where MIn @ denotes the least fixed pasint of 3, |,e, Infix|g(x)=x},
which can be expressed as sup{(g,n,0) (see section 2,2,)

We need the following lemma In ordar to prove thls theorem,

3.8 Lerma, Let X be a quasl-asending chaln In L, Then there exlsts
an ~=continuous functjorm f: L-L s.t,

f.n,0 = Xn for any n,

13



Proof of |jemma, The foljowing construction suffiges,

f(x) = X1, xz03
X(n+l), x#2 and xSX| does not hold for any |
s,t, i$n=1, and x$Xn hojds (n21)}
surp X, x$Xn does not hold for any n,

(This construction was given by R, Mi|ner,)

Proof of theorem 3,7, necessity! Suppose g Is ==continuous, then
Min g = sup{g,n,0},

{g,n.U) is a quasi-ascending chalin, so that by weak continulty
f(Min g) = 1im f(g,n.0),

sufficlency: Let X be a quasieascending chain In L, Then by lemma
3.8 there exists an ~acontinuous function g s,t,
gonlo = xnl
Assure
f(min g) = 1im f(g,n.0),
We note that
Min g = sup X
and
iim f(g,n,0) = fim f(X),

Therefore
f(sup X) = 1im (X)),

3.9 Theorem, f |s weak|y continuous Iff

lingup f(X) = f(sup X) !
for every ascending chaln X In L,

Proof, The necessity Is teivial, so that we prove .he sufficlency,
Let X be an ascending chalin In L, We orove that

liminf £(X) = 1|msup f(X)

follows the latter condition of the theorem, Let a and b denote
|Iminf f(x) and Iimsup f(X)s respectively, We prove agh, We oan
choose a subsequencs Y of X s.%t,

1im f(Y) = a,
since a is Iiminf f(X), Then, by definition,
fimgup f(Y) = a,

14



Wwe not® that Y Is a|so an ascending chaln In L, 8o that
limgup f(Y) = f(sup Y)
by the supposition of the theorem, Since Y ls coflinal in X,

sup Y = sup X,

so that
f(sup X),

L1

f{sup Y)

But
b

f{syp X)
agaln by the supposition of the thsorem, Thus

|imsup #(Y) = b,
Namely,
a = b,

4 Admissibility of Fixed=Polnt Induction

we shall glscuss properties of predicates, For the
oonvenlience of mathematical description we introduce the ordering of
truth values such as

F T,

This ordgering Is outside our |oQglo, and it must be noted that the
concept of weak continuity of predicates as well as that of
admissipl|ity of indugtion Introduced below can be stated wlithout
referring to this ordering (sese 4,6 below), though |t makes some
argurents more undepstandable,

Since wWe considered tota| predicates when we Interpreted
formulas, the concept of monotoniclty or <==continuity has |itt]|e
Importarce as long as we assume T and F are not comparable with each
other, For, then, the on|y monotone or continuous predicates are
the laentioally true predicate and the identically false one, We
shall uge, however, the concepts of monotonicity and continulty of
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predicates with respect to the above ordering, These oconcepts are
mainly related to the existential quantifjer,

4,1 Detinition, Lot TO denmpts thas cImplete twWwo w|omant lattigae,
Namely TO conslsts of O and [, whije 0 5 |, (TO can be regarded as
& T@-space whose opgn sets are [sf bo 1}y and (0410, whigh le Bisp &
continuous lattige, as disgussed a¥ 0, Scott,) We gpha | une this

latticea to represant ths truth Values, 0 and | eorresponding te F,
l,o, fajee , ang 1, .o, %trus, respectively, so that
F <,

4,2 Definition, A "truth function” on L |s a function s,t¢,
L=-T0,

a) A truth function f "admits Induection weakly® |ff
f(gn.0) = 1 to¢ every n (n22) [mpiles f(Min g) = T,

Especlaily, f(x) admlits Induetlion weakly If f(o) = F,
b) A truth function f on L "admits Induction strongiy" j¢¢

lim f(g,n,0) = v Implles f(Min g) = T,

4,3 Proposition, Let X denote an ascending chaln In L, and f o truth

functior on |,
a) f adrits Induction weakly (f¢

f(Xn) = T fqr every n (2<n) Impjles f(sup X) = 7,

for any x,
b) f adrits Inductign strongQly If f admits Induction weak|y and f(0)

e T,
¢) The following .ongitjons afe aquivgignt to ggeh other,

(1) f admits Indugtion Strongly,

(i) Iim £(X) < f(gup X) for any acsending chaln X for whlehn
[im f(X) exists,

i I'imsup f(X) € f(sup X) for any ascending chain ¥,

Proof, a) simlijar to the proof of theoren 3.7 using |emma 3.8,
b) Sunpose

lim f(X) = T,

Ther
f(Xn) = T +¢tor almost every n, (see 4,6)

so that we can chgoge a Quasi-~ascending subchaln vm of X s,t,
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YL = 0 and f(ym) = T for every m,

By weak admissiblllty,

f(sup Y) = T,
By cofimajllity.
f(sup X) = T,

¢) Wwe prove that (1) Impiles (lil), the rest being left to the
reager, Suppose

jimsup f(X) < f(sup X),

1f 1imsup f(X) = F, then |Im f(X) = F, so that

bim £(X) & f(gup X).

Suppose
limsup f(X) = T,

Then we can choose an ascending subchaln Y of X s,t.
fim f(Y) = T,

By coflnmajllty of Y in X
sup Y = sup X,

and, by strong admlgsibility,

f(sup Y) = T,

Thus
jImsup f(X) = f(sup X),.

4,5 Theoren, 0f the following condltions the wupper ones are
Implled by the jower ones,

(i) f admits induction weak|y,

(i) f admits induction strongiy,

¢iil) f |Is weakly continuous,

(iv) f |Is ==gontijnuous,

Proof, We shal| see that (I111) implies (li), the rest having been

proved, Suppose f |s weakly continuous, and |Im f(X) exists, Then

fim f(X) = f(sup X),

by weak continulty,
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4,6 Remark, As noted In the beginning, the conoepts of admissipl |ty
of induction ang weak continuity of truth functions are Independent
of the ordering ot truth values, for we can regard the reletionship

lim f¢q,n,0) = T
simply as stating
f(g,n,0) = T for ajmost avery n,

because of the finiteness (thenge dlscreteness, see 5,4) of TO, Thus
these conditions can be restated as follows,

a) A truth function f admits Inductlon weakly |ft¢f
f(g,n,0) = ¢ tor svery n (n23) Implles f(Min g) = T,
b) f adrits Inductiogn strongly jff
F(9.,n,0) almost every n Imniles f(Min g) = 7,
c) f Is weakiy continuoyus iff

f(og.,n,0) = t(Min g) aimost every n,

4,7 Deafinition, Lot % B8 an Sosvariable, and i a formuln |n whiah at
mest ¥ ocours free, 4 "admlts induction NeaRly W.r,t, x In D o |f4
the truth functinn getermined by A4 gnd « In 0 admieg Indugt|on
weak |y, [|f g is an arbltrary farmule, & "admlty Induetlon wWaak |y
WiPFuly % Ingn (g avary !D.xl-ln:tinnl of & admits Induetlon wank |y,

A "admits Indyetion “eakly wyr,t, xv |fg 3 admite Inductlan
weakly in any D,

We define the Concepts that A "admits Induction strongly
Werot, x  (In py» and that Ao g "weak |y continuous |n x (in pD)»
similary,

4,8 Theorem, The Induction axiom AEOJ*Vy(A:y;eA[x(y)J)nAtMln x] s
valid Iff A admits Induction weak|y w,r,t, x,

Praocf, “8 provs the sufficiancy flrnt, sufficlengy: Lot D be
any col jaction of Darg, EEﬂJ-!rtH{r]-HEltr]JI'HEHIH a] bas
O=Instance of the Induction axlom, 3o that 8t most y ocours frem |p
Blyj. Let Fix) denote the truth funatlon determineg py Blx]s ang
Fix) tne Iunutiun detarminad BY &wlxl,; N R, HE‘J ndmlty
Induction weakly (= o because of tnas a33umotion that Afx)] dods, Thup

Fif.n,0) for gny n2i \mpilas FiMin ¢y,
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whije Min f Is x(Min a), Assume the truth valiues of B[O} and
Vy(B[yleBla(y)]) are both T, Then

F(OI=T,

and
F(p)=T Impljes F(f(b))=T for any Do,

Therefore we nhave
F(f,n,0)=T wevery n2@2,

so that, by weak admissibliliity of F(x).
F(Min £)=7,

Therefore the truth valye of BCMIin al) ls T, Thué

BLOJ+vY(BLyl+bla(y)])«B[Min a] Is valld In D, Henoe the Industion
axtom is valld In D,

necesslity: We use the same notations as above, BY definjtion of
vallolty any O-instanga of the axiom must be valld, Theorefore If the
truth values of B(O0) and vy(B{yJ=BCLa(y))) are both T Y
F(f.,n,0)2T every n2(, the truth Vvajue of BrMin a) is T,. Namely
F(MIn f)=T,

4,9 ovefinition, ACx) "admits relativized induction w,r,te X" IS
A(x] makes the Induction rule sound, Namely, the rule obtained from
the schema of Inductlion rule by substituting ACX) In place of the
meta-variable A |Is sound,

4,19 Theoren, ACx) admlts rejatlvized Induction [f Alx] adm|ts
inductleon weakly,

Proof, We have to prove the soundness of the foi|lowing rule,

p =es ALO) Afa), P === A[t(a)]

-----------------------ooﬂo-----.------.--- <a>

P e=o A[MIp t)

Let L denote Ci & ,,, & Cm where P Is Cly v » Cm, The rule |s
sound 11t (C+al0)«(C=Vy(aly]+altly)J))=(CoalMIn ¢]) s valld by
definlitlon, Therefore we shal| prove for any U, every D-Instance of
this formula, say (E«BLO1)=(E-Yy(BLyJ=BLb(y) 1) )=(E<B(M[n b1y s
valld, where b Is an arblitrary varlab|e-free term of the same type as
t, |.e, (co=cx0)o for some Qu, Obvious|y we have onfy to prove for the
case that b |s a name, For, If b [s not a name, there |s some name b’
s,t. rb=eb', and the valldity can be estabiished easlily using this
fact and the case that b |s a name, L6t F(x) be the truth fynctlon
determined by B[x), and f be xb, Then the following condition s
gufficlent,
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If »E=T, F(0)zT, and, #E=T and F(c)sT Imply F(f(e))aT for any
cel®o, then F(M|n f)=T, ’

Min t Is #(Min p) by definltion, Assume the premise of the above
conaltlion, Then py induction, .

F(fyn,0)=7 every n20,
By the assumption that Alx]) admits induction weakijy, so does BCxJ, so
that F{yx) admits induction weak|y, Therefore

V(Min f)=T,

4,11 Theorem, ACx) admits icf Inductlion if ACxJ admits relativized
Induction, where py let induction |s meant the relativised ruie In
LCF to infer ACY) from y=MIn x, ALO], and Afa] == ACx(a)],

Proof, We see that j¢f inductlon rule is a derlived rule,
ysMin x, P ==s A[0) Afal, y=Min x, P =ws ACx(a)]

et e e e e sacacacacentaccaceccaaeas <a) [nduotlon

YEMin x, P e=s A[MIN x)

-----------—------------------------------------------- .au. ' 'ty

YEMIn x, P wes Aly]

4,12 Coroltary, Alx] admits jcf Induction |f ACx] admits Inductlon
weakiy,
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S Characterization of Predicates that agmit Fixed=Point

Induction
We study what kind of fornulas admit Induction, For the
reacdabljity of proofs we shall discuss them in terms of truth

functions that have one argument designated by x, The theorems bejow
oa" b€ %0 gpplled to every Instgnce of formujg - that the results wli|
be regarded as statements about farmulias In general by udeflinition
(see 4,7,) For this purpose J|oglical combinators bejow should be
understood as fungtions or functlionals whose values are T or F, For
Instance VyF(x,y) denotes the truth function determined by VyA[lx,y]
where F(x,y) 1Is ¢the truth functlion determined by A[X,y] in D, The
relation ¢ Is not a logjeal symbo| of FLT, but 1t will be ysed as a
preolcate later on |{n connection with LCF,

5,1 Theorenm, The rejationship f(x) £ g(x) admits Induction strongly
It f(x) and g(x) arg w~contlinuous,

Proof, Let F(x) deapnote the corresponding truth function, 1,e,,

Fix) = 7T fix) € g(x)}
F otherwlisge,

Let X be an ascending chaln In L. Suppose

fim F(X) = T,

so that
f(Xn) € g(Xn) for aimost every n,

Then, by nonotnnicity of g,
1(Xn) < g(syp X) for ajmost every n.
Therefore we can chgose an ascending subchaln Y of X s,%t,

f{(Ym) € g(syp X) for every m,
Thus
sup f(Y) < glsup X),

But, by ==continuity of f,

f(sup Y) = gsup f(Y),

so that
fisup Y) < glsup X,

By coflmpallilty of Y in X,

sup Y = sup X,
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Thus

')

f(sup X) £ glsup X)),
'.0.0
F(S-JD X)) = T,

5,2 Remark, f(x) < g{x), f and g beling continuous, |Is not aivways
weak|y contlinuous, (the fact that 1t s not ==continuous belng
we|l=known,) Let N’ be the natural numbers wlth the Infinity =
(omega) ordered In the usual sense, Define f, gi N?«N’ by

f{x) = x+1,
a({x) = x,

Let X be s.t,

Xn = n each n s.t, 1sn¢~,

Then
F(Xn) = F each n,

but
F(sup X) = 7,

5,3 Theorem, Let f be an ==continuous functlon Into a dlsarcte
lattloe L’, ¢ an element of L, Then the rejationship

fix)=e
ls weakly contlnuous,

Proof, Let X be an ascentdlng chain In the domaln of f, By ¢theorem
5,4, t{xn)=¢c almost every n Implles f(sup X)=¢, SuUPPOSe

f(Xn)%o ajmost every n,
We have to prove
f(syp X)#c
Let Yn denote f(Xn) for each n, By monotoniclity of f,
azY1< .., YnSY(n+1)S .4, Sb,

where b denotes sup Y, Y must have at |east an accumuiating point,
for, otherwlse, we could choose an ascending chaln Z that |s a subset
O' Y s.t.

ac<éi< 4 <Zn<2(n*1)< ve e <b,

which contradicts the alscreteness of L’, By monotonicity such an
accurulating point |s unique and wilii be denoted by d, Thus
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Ynsad Qaimgst every n,
By the supposition
cxd,

By monotonicity again, d Is the max|mym ejement of Y, 8o that
dasyp f(X),
By ==continuity,

f(sup X)ssup f(X)
zd
¢,
Thys
f(syp X)%c,
5,4 Rerark, 1In the above proof we uged "dlscreteness” to mean there
|s no agcending chain s,t,

adx1¢<x2< ,,, <Xn< 40 <by

for any a and b,

5,5 Theorem, &) Flx)vG(x) admits Induction strongly f F(x) and G(x)

do,
b) F(xIVG(x) |s weakly continuous it F(x) and G(x) eare,

Proof, a) Suppose

| Imgup F(XIVG(X) = T, ¢ Ct, 4,3,c01il) )
Then efther
| {imgup F(X) 3 T
or
| imgup G(X) = T,
so that either
Ftsyp X) = T
or
Glgyp X) &8 T

by strong admissibi|ity, Thus
F(sup X)vG(sup X) = T,
b) By weak continuity,

F(suyp X) = F(Xn) = & for ajmost every n

and
G(sup X) ® G(Xn) = D for a|most every n,
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for some a and b, Therefore

F(Xniv3{Xn) = avb for a|most every n,
At the same time,

F(syp X)vG(syp X) = avo,

5,6 Remark, a) F(x)vG(x) does not necessarl|y admlt |nductlon weak|y
even If F(x) and G(x) do, e conslaer N’ (see remark 5,2) agaln, Lot

Fix)y = 7T x30;
F B<xS";
and
G(x) = T B<xE*;
F X=0 op x=e,

Then F and G admit {nduction weakly, and

F(n)vG(n) T for every n20,

But

F(=)vG(e) F

b) F(x)vG(x) does not necessar!|y admit Induction weak|y even |f one
of F(x) and G(x) is weakly contlnuous and the other admilts Induction
weakly, For, In fact, F(x) In the above examp|e Is weak|y contlnuoys,

5,7 Theorem, a) F(x)&G(x) admits Induction weakly if F(x) and G(x)
G°|

b) F(X)&G(x) admits Induction strong(y if F(x) and G(x) de,

¢) F(x)&8G(x) |s weak|y continuous If F(x) and G(x) are,

Proof! left 1o the rsader,

5,8 Theorem, -~F(x) ls weakly continuous If F(x) |s,

Proof, Let a dennte tha truth value F(sup X), By weak cont|nuity,
F(Xn) = a for a|mos{ every n,

Lot b denote the tryuth vajue =a, Then

~Fi{Xn) & b for a|most every n,
Besiades,
~F{3up X) = b,
5.9 Remark, a) =F(x) does not necessari|y admit Induetlen veak|y even

it fpix) admits indyction strongly, Let p(x) be the truth fynotlon
determined by xS« & =<x, which is equivaient to Xsw, In N', Then
F(x) admlts Inductlon strongly because of theorems 5,1 and 5,7(b),
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Let Xn bs the n=th natura| number for sach n, Then

~F(Xn) & T for n20,
But
wF(gup X) = =~F(e) = F,

Thus ~F(x) does not admit Inductlion weakly,

b) By the above argument, the negation of a formuia of LCF does not
adrmit Induyction weakly In general,

5,10 Theorem, 1f F(x) and «~F(x) both admit Induotion strongly then
F(x) |s weakly continyous,

Proof, We prove that F(X) I8 convergent for any ascending c¢chaln X,
The caee that

I Imgup F(X) = F
Is triviaj, Suppouse

|tmgup F(X) = T,
We prove
limint F(X) = T

by contradiction, Assume

Iimint F(X) = F,

so that
fimgup «F(X) = T,

By strong admissiblilty,

~F(gup X) = T,

'...l
F(SUD X) = F,

Thus F(x) does not adml¢ Induction strongly, whigh Is a
contradlotion,

5,11 Theorem, a) Fix)=G(x) admits Induction strongly If F(x) s
weakly continuous and G(x) admits Induction strongly,
B) F(x)=G(x) Is weak|y continuous If F(x) and G(x) are,

Proof, F(x)2G(x) lg a tautology of «F(x)vG(x), so that theorems 5,8
and 5,5 euffice,

5,12 Remark, F(x)=+G(x) does not necessarily admit Induction weak|y
even If F(x) admits Indyction strongly and G(x) Is wecontinmuous, Let
G(x) be 7, 1,0,, the ldenticajly faise truth funotion, Then F(Xx)=2G(x)
Is a tautology of L F(x), Conslder the exampie of remark 5,9,
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Hereafter v |s used to Indicate the apgument Instead of x,

5,13 Theorem,

a) YxF(x,y) admits Induotion weakly w,r,¢t, y It Fix,y)

VxF(x,y) admits Induction strongly w,p,t, y If F(x,y) does,

by weak admissiblllty,

does,
b)
Proot, a) Suppose
YxF(x,0) = T
and
Yxb(x,Yn) = T for every n,
Then
F(a,0) = T
and
F(a,Yn) = T for avepy n,
for any a, Therefore,
F(a,sup Y) = T for any a,
Thus
YxF{x,sup Y} 3 T,
b) Suppose
Fimsup YxF(x,y) = T,
Then

limsup Fta,yn) = T
By strong admissibi|lty,

F(a,sup Y) = 7

Thus
VYxF(x,sup Yy = T,

5,14 Remark, a) YxF(x,y) |Is not

each &,

each a,

necessarily weak|y continuous even |¢

Fix,y) Is, Let F be s,t,
F(x,y) = T x<= and x<y, or x=ze}
F otherwise,
Then F is weakly continyous in y, for
Fim Fla,Yn) = F(a,=) = sach a¢w~,
and
F{=yYNn) = F(w,=) 3 T for every n,

for any ascoending chaln Yn

YxF(x,Yn) = F

so that
ilm vxF(x,Y) = F,

in N7,

Moreover,

for every n,
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But
VxF(x,sup Y) s ¥YxF(x,=) = T,

b) YxFt(x,y) |s not necessarlly weakl|y continuous even If F(x,y) |Is

wecontinyous In vy, For Fix,y) deflined above |s wecontinuous In ¥,
because It is not only weakly continuous but also monotone (ef,
theorem 3,6,)

5,15 Theorem, a) 3IxF(x.y) admlts Induction strongly 1t Fix,y) |s

monotone in Yy,
b) IXFix,y) |s monotone and weakly continuous f(and ¢therefore
wmcontlnuous, See theorem 3,6) If Fix,y) I8,

Proof, a) Suppose

1im AxF(x,Y) Ty

so that for some a and M

F(a,YM) = T,
By monotonicity:

Fta,sup Y) = T,
Thus

IxF(x,sup Y) T,

b) We provo
IxF(x,3u0 Y) = |iminf 3xF(x,Y) = |Imsup IxF(x,Y)

for each ascendlng chaln Y by case analysis, (1* Suppose

limgup IXF(X,Y) = T,

so that

Fta,YM) = 7 for some a and M,
By nounotonlcity,

Fta,Ym) = 7 HEn,
so that

IxF(x,Yn) = T M&n,
l'e.l

lim BXF(X'Y) = T.
Alsc by monotonlci*ty, F(a,YM) = T Impjles

Fta,syp Y) = T
so that
BXF(X'SUD Y) = T,

{ii) Suppose
iimgup 3IXF(X,Y) = F.

l'enl
lim AxF(x,Y) = F,

Then there axlsts M(a) fnr each a, s.t,
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Fta,YM(a)),

80 that, by monotonijcity,

Fta,Yn) = F for any a and n,
(otherWwise F(byYm) = T, MSm for some b and My which Imp|les fim
3XF(x,Y) = T,) Thys

lim F(a,Y) = F for any a,
80 that by weak contfinulty,

Fta,syp Y) = F for any a,

Therefore
IxF(x,sup Y ) = F,

5,16 Remark, a) 3xF(x,y) Is not necessarily weakly contlnuous even
It Fi(X,y) Is monotone (and therefore admits Induction strongly by
theorem 5,15) in y, Let F(x,»y) he

VZ(z<m22<y),

Then F(x,y) is monotone In Y, and

F(x,n) = F for every n and any X,
g0 that

IxF(x,n) = F for every n,
But

JXF(ip“’ =T,
because

F(x,=) = T,
b) 3xF(x,y) 1Is net necessarl|y weak|y cont|nuous even I F(x,¥) Is
monotone and admit jaduction strongly, Let

G(x,y) = 7 YExC=}
F otherwise,
Namely,

Gix,y) = ~F(x,y),

F(x,¥y) belng the <tputh function described In remark 5,14 20 that
G(x,y) Is weakly continuous In y by theorem 5,8, But

IxG(x,n) 3 T every n,
and
BXG(X.-) s F,

28



é Syntax of Formuias that admit !nductlion
6,1 Tabjes of Inheritance of admissibll |ty

We summarize the I[nherltance of eadmissibl|ity of Induction In
the tables so that they can be checked by machlnes easl! |y,

These tables shall be regarded as a part of the postuiates of

FLT for technical (loglcal) reasons, Since the weak admisslibl|lty
of imduction is an informal concept that |s not effective, we cannot
accept a formal system deScribed |In terms of that conoept, al|though
we woulg |ike to use the Induction axlom, or rule, for every formyla
that admits induction weakly, Instead we regard these tabjes as an
Induetive deflinition, and hence an effgct!ve definition, of formulas
that "adm|t induction syntactlicaily", Nameiy we call a formula A[C )
to admit Inductlon syntactically |[ff ACX] Is concluded to admlt
Induction weakly w.r,t, X using only these tables, the primitive
cases |isted In I1 serving as the base step of inductive definltion,

We add the fo|lowlng definition for practical purposes,

Definition, A formula A Is sald to be "constant w,r,t, x" 111 waA

does not depend on x, A term t Is an "|cf term” Iff all ¢he
constants and variables occurring In t are of oontinuous types, A
formula of the form t<u where t and U are icf terms Is called an "¢t
awff"

Obvious|y a suffliclent conditlion for A to be constant w r t
x Is that x does not occur free in A, Proofs concernind the
Inheritance of admissibjilty related to this oondition are left to
the reagerp,

11, The following congitions are hlerarchical In the sanse that the
lower are the stronger conditions,

(primitive cases)

------------------------.------------------------.---.-----\'a

I A admlts Indycsi on weakly, | |

I A admits Induction strongly,| tSu (t and u are jcf terms) |

i A Is weak|y continuous, | $20, t=TRUE, t=FALSE |
| I (t Is an lcf term)|
| A |s constant, | x does not occur free |n A, |
(n A admits relativized Inductlon and icf Induction WPty X |f

A aarits induction weak|y w.r,t, X,
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(11
(i

12,

and the first row,

)
)

A Is w=continyous iff A |s weak|y contlnuous and monotone,
A admits inductlon weakjy w,r,t, X If A |3 menotons WPty X,

Table for &, v, and =,

If A an¢ B satisfy the conditions stated |n the flrst column

condltlions shown in the corresponding places,

I A\ B ladm, weak, ladm, str, |weak. cont, lconst, |
----------------------------.-----u.-—-------------------.-..
I \op | | | | |
ladm, !&€ladm, weak, |adm, weak, jadm, weak, |adm, weak, |
Iweak, Ivi X | X | X ladm, weak, |
I I=| X I x | X ladm, weak, |
ladm, |&ladm, weak, ladm, str, ladm, str, |adm, str, |
iste, [vi X ladm, str, ladm, str, ladm, str, |
l |~ X I X I X jadm, str, |
---------------—.--..----------—---.--------.-------..-.-.--.
jweak, |&|agm, weak, ladm, str, |weak, cont,|weak, gont, |
lcont, Ivi X ladm, str, |weak. cont,|weak, gont,|
| =] X ladm, str, |Iweak, cont,|weak, cont,]|
----.-.-----.-----------.---.------.-.---.----.----..--.---..
lconst, Iéladm, weak, ladm, str, |weak, cont,l|const, |

| Iviadm, weak, ladm, str, |weak, cont,|const, |
I |+ladm, weak, |adm, str, |weak, cont,|const, |

Teble for =, VY, and 3,

Al| the conditions are w,r,t, X,

It x and y are ldentical then VyA and 3ya are constant WePet, X,

I A I ~A | YyA | dyA |

I | | IIn genera| |A: monotone]

jadm, weak, | X ladm, woak, | x ladm, str, |
;;dmj.;tr:. l-- .-;-- -la;m. str,y | X ladm, st:. l
.----.--------.---.--.---.--.---.---.--..-.--.--------.-..--'.
Iweak, cont,|weak. cont,ladm, str, | X Iweak, gcont, |
.---.-.----------.---------------.-.---.-------------.-.---..
lconst, lconst, lconst, lconst, lconst, |
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6,2 Example of formuja that admits Induction

YxF(x,y) 1Ig weak|y continuous If F(x,y) Is ant|=monotone and
admits Induotion strongly w.r,t, ¥,

Fory, VXF(x,y) Is a tautojoegy of -3Ix=F(x,y), Suppose F(x,y)

Is anti~monotone and admlts Indyction strongly w,r,t, v, wF(x,y) |s
monotone, so that ~F(x,y) admlts Induction strongly by theorem 5,4a,
Then .F(x,y) |s weakly continuous by thenrem 4,8, so that IxF(x,y) Is
weak|ly econtinuous by theorem 5,4b, Thus 3xXF(Xx,y) |s weakly
oontinuous by theorem 4,6, (See tables of 6,1)

We can check thie reeult by a direoct proof as foi|ows,
Proof, Case 1) Suppose
limsup YxF(x,Y) & Fys [,04s |Im VXF(X,Y) ® F,
Then there exists M s,t,
YxF(x,YM) = F,
so that there is some a s,t,
F(a,YM) = F,
By antlemonotonicity,

F(a,sup Y) = F,
s0 that
YxF(x,sup Y) 3 F,

Case 1) Suppose

IImsup YxF(x,Y) = T,
Then,
| Imsup F(a,Y) = T each a,
so that
F(a,Yn) = T for evepy n, each a,

'g..)
Iim F(a,Y) = T,

(Qtherewise |Imsup F(a,Y) & F by anti=monotoniolty,) By satrong
admleslibl|ity,

F(e,eup Y) = T each a,
80 that
YxF{(x,sup Y) » T,
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7 Translation of LCF Into FlrsteOrder Loglc of Typed Theorles

7.1 Axlomatizatlion

In order o axlomatize LCF, flrst wa need to extend the
syntax of terms so as to Include A-expressions as fo||ows,

B5, If t |s an ao=-term and x is a Bo-varjable, then ixt Is a
(Bo#%0)o=~term, Any occurrence of x In \xt IS not free,

The corresbonding Interpretation is as fo|lows,

DS, If ¢t Is Axufx]) and x |s a Ho~-variabje, ula) must he &« o0losed
ao-term for each fBo~name a so that ,(ulal))eDao, for some ap, We jet
vt be the function which sends each ra€bDNfo onto w(ulal), Such a
function is known to be continuousiid, 713,

Remark, The proof of continuity of the functions represented by
A-axpressions, namgly the tepms |nvo|ving the oparatar N\, requires
induction on the structure of terms, The case that sup Da’s do not
exlst In general has been treated by R, Mlinep,

we Introduce an ordered base type denmoted by Bo, three
Bo-constants O, TRUE, amd FALSE, and, a8 (Bo=%0-+@p<dp)o~constant 2 and
an (a,a)=pradicate < for each o,

OCBo] consists of three elements, TRUL® and FALSEs beling
Incorparabie, Heraafter we use tne same symbol to denote a
Bo=¢nnstant and the tputnh valye represented by |¢t,

3(tsusvi, namely ((2(¢))(u))(v) reads "If t then u else v"
and is written as tosu,v ysually, We |et adb,c be O, b, and ¢, (f a Is
0, TRUE, and FALSE, respectively, for each a€Bo, beDap, and ¢é€D%o,
This function Is continuous(id],

X<y represents the order relatlion disgcussed In ¢the previpus
gectlons, mathematizsalliy, [Intultively, however, xsy means that y Is
"def Inec” more than or as much as x, xz=0 read "X |s undefined,” If x
and y are functions, this means y Is an extension of x as function,

We glve ¢the following non-=|ogloa} axlioms, An arblitrary
term with voids can be substituted In place of t{ ], provided that
the variable dsslignated by x does not occur free In that term, tex]
and tlY] denote the terms obtalned from It by substituting arblitrary
varlables designated by x and y, respectively, In place of |ts volids,

32



rpaflexivity,

antisymmetry,

transitivity,

extenslonmallity,

monotontecity.

Nonjoglcal| axioms

xEX,

xSy & ySx = XSY,

xzy < XY,

xSy & yg€z = x52,

Vzix(z)Sy(2z)) = XSY¥,.

x<y = x(z)sy(z),

x<y = 2(x)SZ(y) 4

miniral elements,

truth values,

concitionals,

\-conversion,

0¢x,

D(x)<0,

x=0 v xsTRUE v x=FALSE X

go-variable,

"O=TRUE ’
‘O=FALSEv
~TRYE=FALSE,

Osx,y = 0,
TRUZ2x,y = X,

FALSEax,y = VY.

(axglx1)(y)stlyl,
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7.2 Adequacy

We need to ses that ajj the Inference ruies In LCF oan be
adequate|y expressed in the present calcuius in the form of theorems
or aerived rules, whieh means that we do not loge anything by
changing the logle, in other words, ws are desiling with an
extanslon of LCF In that we can prove s theorem A In the new caleoulus
If & |s a theoram Ip LCF, mnd, morwoVer, we can use ARy rule ef LEF
In the present cajeuiys, We have anly to examing those rules that sra
nalther of the nature of propositionml cclcoulus nop expregand am  ans
of the |ogleal or ngnjogical ax|oms,

Ji, abstraction ruje (LCF),
tla) € ulal

Mtlx) S Axylx]
Deryvaton,

tla] < ula)
eetemcccemcr st er e A-conversion (and equailty)
Axt{x1¢a) S Axufx])(a)
---------.------------------.-- <a) v-'ntroduct'on

Vy((th[xg)(y) S (Axulx1(y))
.-----------..-------.--n‘----- extens'ona' 'ty
AxtCx] € Axylx]

J2, furctlon rule (LCFY,

Axy(x; s vy
Cerivation,

(Axy(x))(2) = y(z) A=converslion
eSSt ceeccecacacncnaa (2D V=introdustion
VZO(Axy(x))(2) = y(z2))
bl i L IR e, extens'onal'ty

Axy(x) = y

J3. cases ruje (LCF),

{(t=0) (t=TRUE) (t=FALSE)
A A A

A
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Derivation,

(£=0) (£=TRYL) {taFALSE)
ts0 v t=TRUE v t=FALSE A A A
weceeememesecsssccmcmemece-ssasmsc=mmmecccscssace=  Veg@lim|nation

A (twice)

J4é, Inguctlion rute (LCF), It sufflces to show that any conjunctlion
of lcf awffs admits Induction syntactically In the sense of sectlon
6,1, for LCF is a formal system that carrles out relativized
deductlon for these sentences, Each Icf awff admits Inducclon
strongly w,r.t, any varjable (tabje 141, 6,1) subJect to the type
comformity, So does anyv conjunctloun of them (table 12, 6,1),

7,3 txample taken from proof of compller correctness

The following eoxample |s ¢taken from an FLT=|lke proof of
Mccarthy-Palnter’s theorem{53, The proof of this theorem In LCF s
discussed In (8] and (13],

wWe presuppogse there are three types called lanouagel,

language?, and the meanind sSpace, These need not be base types, In
particular the meaning space can be the type {states)<(states),
Namely the meaning space Is the set of partial functions of (states)
Into itself, A concentual compller carries out a transiatlen of
janguagel Into |angyage2, an expression x In languagel being mapped
onto obj(x), We need not assume continulty of the meaning space and
functlion obj for the present argument, Wwhich I8, howsver, not an
Iimportant polnt, We use the following constants, each of them belng
either an Individual constant or a function In the usual sense, The
asterisked constants are assumed to have been glven appropriate
axiomrs,

constant type comment

isconst (langyagel-+bolo lsconst(9)sTRUE,

isvar * (langyagel-do)o isvar(a)=TRUE,

lsexo (langyuagei=+g8o)o |sexp((8+a)+(9+b))aTpyk.
arql * (lanqgyagel~langyagel)o argl((8+a)+(9+h))=8+a,
arg2 » (lamgyagel~langyagel)lo arg2(8+a)=a,

obj . languagel~ianguaged

meani » languagel+meaning space

meanre . language2-meaning space

We use a (languagel, languagh2)-predicate Correct(x,y) to mean ¥ ls a
correct object proaram for expression X. Correct(x,y) Is not
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continuous In general, because It Is usually deflned by an axlom | lke
(Ax,1) VxVy(Correct(x,y) = meani(x)zmean2(y)), (e)
The function isexp {s deflned by the foliowlng axlom,

(Ax,2) I'sexpsMin A Ax(Isconst(x)>TRUE, (isvar{x)aTRUE,
(flargl(x))a(ttarg2(x))2TRYE,FALSE) )FALGE))),

The theorem we want to prove |s

(1) Vx(1sexp(x)=TRUE = Correcti{x,obj(x))),
Correct(x,obj(x)) |8, however, not sufflclent as an Inductlon
hypothesis In general, so that we prove flrst a formula of the form
(2) Yx(|sexp{x)=TRUE = A),

usually, where A Is the conJunction of a certaln generallzatlionrn of

Correct(x,obJj(x)) and addit)jonal conditions peculiar to saoh
compllina algorithm, More concrete]y, we Shall consider a compller
which works with a coynter, n, Indlcating that the addresses whose
mneronic names are TS(1)s ., » TS(n) are occupied ag temporary
storages, We defing the foliowing constants, the iast three related
to the ioading or aijocation, The set of Integers, or addresses, |s
a base type, varsno(x) Is the number of distinct varlables oceurring
in x, varno(z,x) dgnotes some number)ng of such variab|es,

constant type comment

compi . (languagel, intagers)+ianguage?

TS integepseintegers

varno . (languagel, ianguagel)<+integers varno(a, (8+a)+(9+b))al,
varsno » langyagei~<|integers varsno((8+a)+(9+b))=2,
loc (languagel, languagel)+integers

In this case, obJj(x) |s defind by the following axiom,

(Ax,3) Yx(obji{x)scompl(x,0)),

A typical form of A |g

(3) Yn{n2@ <+ Correctix,complix,n)) & Unaffected(x,n,compit(x,n))),

where Unaffected Is a (languadel,integers,language2)-predicate . t,
Unaffected(x,n,y) means the objeot program y does not destroy the
contents of the storages corresponding to the program varlables
occurrirg in the sayrce program x or any of TS(1), ,,, 4 TS(n),

#) The reacer may reca|! that = means logical equivalenge, whl|e a
equality in the strong sense, that |Is, = in LCF,
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If we make the addresses absolute by the bejow axlom, whlch
corresponds to a particular loading obviously, the object program
becores as flg, 1 helow, OCccur(Z,x) reads z occurs In x,

(Ax, 4) Vzvx(lsvar(2)=TRUE*0ccur(z.x)~|oo(z.x)=vurno(z.x)).

vx¥nlloc(TS(n))svarsno(x)+n),

compl((B+a)+(9+b),n) memery map

(Iinstruction) (mnemonics) - O e ihabetduid kit
cascceccrecss cwewerecce= 12 laccumu|nter |
L1 8 EXELE PRI ELE R L LR 2
§STg n+3 TS(n+1) 12 b I
Ll 9 l---..--------.Cocccnnool
AUD 2 b 13 ITS(1) |

¢ 7C n+d TS(n+2) TEER) te e
l n+3 TS(n+1) In+2 1TS(n) |
A n+4 TS(n+2) |eeecccnsccccccoranancne |
In+d ITS(nel) |
In+d [ TS(n+2) |
Let N2l to get opJj((Bey)+(9+p)), | emerccrwcaccacaccnncnreo|

fig, 1 Etxample of objcet program
and memdry map

Let ACx) denote (3) hereafter, We note that nelther lsexp
nor n occurs frae in AlxJ, Then, the formula (2) admits |cf
Inductlion w,r,t, "igsexp"” as follows,

isexp(x)=TRUE weak, oont, w.,r,t, isexp}
Alx) const, W,r,t, Isexp;
isexp(x)=TRUE « Alx) weak, cont, wW.r,t, isexpl
Vx(isexp(x)sTRYE < AlxJ) adm, str, w,r.t, [sexp,

(See tables in section 6.1,)
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Thus we can Infer (2) from (4) and (5) be|ow,
t4) Vx(0(x)=TRUE = ACx1),

(%) Yx(Ff(x)=TAUE o ALX]) =<

vx((isconst(x)>TRUE, (Isvar(x)sTRUE,
(flapgl(x))o(f(arg2(x))>TRUE,
FALSE) FALSE)))=TRUE + AlxD),

We can Improve the readabl| |ty by the following
consideration, Let p be an (%«Bo)eterm, Then we |et p and “p stand
for the formulas p=TRUE and p=FALSE, respectively, This cauees no

oomfuslon because of the syntax we emploved, Obvious|y

p-vV "p
is not val|id, whi|e pv~p |s, We notice the rejatlionship
(p2q,r) = p8a v “pér, (e)
which is provable in FLT, since thls formula Is an abbreviation of

(poqsr)sTRUE S p=TRUE & q=TRUE Vv p=FALSE & r=TRUE,

Thus we capn rewrite (4) and (5) as follows,
(4') Yx(0(x? » A[x]),

(5¢) YX(f(x) « A[X]) ==

vx(lsconst{x)visvar(x}vTiscong¥{x)8” Isvar(Xx)
& frargl(x)i& f(arg2(x)) = Alx1),

1t must bs noted that there are snme substlitutes [n LCF for
formulias |lke (1)=(4), thaough these Tormulas are not allowed as
legltimate formulas In it and the Interpretation becomes dlifferent,
By the deductlon thaorerm In fjrst=oprder i0glic we can 2!80 express the
gsentence (5') ty a fopmulia of FLT, replacing =« by « and binding f by
ynlversa| quantifiep, obtainling

(57°) VE(YX(f(x) » Alx]) < |
Yx(iseontsti(x) v Isvar(x) v “lsconsti{x) &
“Isvap(x) & f(apgl(x)) & flarg2i(x)) = ALx])),

For such a formula there Seem to be no natural substitutes In the
tforr of LCF formujas,

a) ]t is a |itt|e 1interesting, and also wuseful, that this old
relatlonship stlll holds In a caleu|us that Includes the uyndefined
truth vaiue, See, e,g.,» (23,
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Discusslions

‘The wrlter has been motivated toward the study deecrlibed In
thls paper through an attempt to transiste his formal system
represent|ng the eaulvalence of Algol=Ilke statement{2, 3] Into LCF,
For that purpose having some predicate calculua=|lke facl|lty seems
to be essential, for we need to express Implication Detween strong
equivalence In the form of formula,

Fpom the wplter’s paint of view, the following are among the
possible advantages of having some predicate calculus=|lke things
within loglc for computable functlons,

1, (huran englneering) In not a few cases, the conventional (ogloal

operators make the wrlting and understanding of descriptione easler,
Beslides, many people are fam||lar with expresslons and derlvation In
predicate calculus, especlally, of flpsteordep,

2, (undeplylng thegries) In the practical fleld of applicatfion of
such a loglec, for Instance proving correctness of compl|ers, We have
to handie underlying theorles whose representations In. predicate
calculus seem to be natural, |lke ejementary set theorV, We do not
care If some of the sets Involved In our proof are not computable or
continuous, even If they might be In fact computable, There ure a|so
theorles of equlvalence and correctness of programs whlioh are rolated
to predicate calculus,

3, (meta-theoremsi Thepe wlil be many facts about the obJects of LCF
that can be stated on|y In the form of meta=theorems of |cF, whlle
signlficant portion of them could be stated as theorems In an
extendeg loglic, Then handling derlived rules and applylng already

proved theorems wil| become more oonven|ent,

Obvious|y these deslirable properties wliil not be obtained
before considerable exper|ments Moreover there must be some
compromise, For Instance, 1t we use entlire classlical oredloate

calculus as In the present paper, we are out of the LCFe|lke world
that consists of sole|y contlnuous functlons, |osing some neatress of
the forrallsm and relative simpllicity of Implementation, Employling
sacond or hlgher order predicate ocaloulus mlght glve wus more
oomplexity as we|| as power,

1t must be noted that J., McCarthy(4) suggested that In some
generallizatlon of Scott’s loglc using predicate calculus we should be
able to Dprove the continulty of functlons, It seems that FLT Is
caPable 0f doling that in spite of the limitgtion thgt no Dpredlogte
varlables are ajlowed, for we have quantiflers ranglng over fV od
sets In effect, A fixedepolint Inductlion based malniy on monotoniolty
within second-order ppedicate calculus has been disoussed by D,
Park[93.
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